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Abstract 
 

This thesis describes the development of a discrete event building evacuation 

simulator using the Java programming language and the various results that 

were produced from the simulations that were done. The simulator allows 

people to evacuate a building which has been defined via a graphical interface. 

People are then split into two groups, those who use elevators and those who 

do not. The program provides various statistics based on the simulation that 

was done.  

 

Due to safety concerns, during a building evacuation only stairs are used to 

evacuate a building. This often leads to huge queues forming up and could 

potentially be avoided by allowing elevators to take some of the load of the 

stairs. After the 9/11 attacks in 2001 there have been some debate about 

changing the evacuation procedures for tall buildings. There have been 

previous work done on simulation of tall buildings evacuation and big time 

related gains were shown by allowing people to use elevators. This thesis 

concentrates around evacuation of smaller buildings, up to ten stories high. 

 

The results of the thesis show that faster evacuations are possible with 

elevators in smaller buildings, although further research is required to 

generalize the results. 
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Sammanfattning 
 

Det här examensarbetet beskriver utvecklingen av en diskret händelsestyrd 

byggnadsutrymningssimulator med hjälp av programmeringsspråket Java samt 

de olika resultat som togs fram med hjälp av simuleringarna. Simulatorn 

tillåter människor utrymma en byggnad som har blivit definierat med hjälp av 

ett grafiskt gränssnitt. Människor delas sedan upp i två grupper, de som 

använder hissar och de som använder trappor under en utrymning. 

Programmet tillhandahåller diverse statistik baserad på simuleringen som 

utförts.  

 

På grund av säkerhetsskäl används enbart trappor under en 

byggnadsutrymning. Detta leder ofta till att stora köer formas och kan 

potentiellt undvikas genom att låta hissar användas för att minska köerna i 

trapporna. Efter attackerna 11/9 2001 har en viss debatt förekommit angående 

ändringar av utrymningsprotokollen för höga byggnader. Det finns tidigare 

arbeten på utrymningssimuleringar av höghus och stora tidsrelaterade fördelar 

har påvisats genom att tillåta folk använda hissar. Detta examensarbete 

fokuserar på utrymning av mindre byggnader, upp till tio våningar höga. 

 

Resultatet av examensarbetet påvisar att det är möjligt att uppnå snabbare 

evakueringstider med mindre byggnader med hjälp av hissar, men mer arbete 

krävs för att generalisera resultatet. 
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1 Introduction 

 

 

1.1 Background 

It is for most people common knowledge to not use an elevator during an 

evacuation of a building when there is a fire. There are valid reasons why it 

could potentially be a very bad decision to use the elevator. For instance, if 

one would take the elevator and the power is cut by the fire, there is an 

overwhelming risk that one becomes trapped in the elevator. There will 

however always exist a category of people that will have a valid reason to use 

an elevator instead of stairs. 

 

Consider, for instance, a group of elderly or disabled people in a situation 

where a tall building has to be evacuated. It may be difficult for them to use 

the stairs, and in some cases it might even be impossible – they have to use the 

elevator.  

 

After the 9/11 attacks in 2001 there have been some debate about whether or 

not to change the evacuation procedures of tall buildings [ref 1]. For this 

reason and among others it is interesting to study the impact of elevator usage 

during an evacuation. 

 

The inspiration for this thesis ironically came from the exceptionally poor 

elevators at LTH Campus Helsingborg. For a long period of time they were 

not working properly, if at all. It became an annoying issue for us who used 

them at a daily basis. They inspired us to think about various thesis topics 

involving elevators one way or another, and we are very pleased to have 

chosen this particular one. It turned out that the subject was most interesting to 

study and work with. 

 

 

1.2 Problem description 

It is possible with mathematical models to study different systems and their 

behaviours. However some systems are so complex in their nature that it 

becomes very hard, if not impossible to study them without a dynamic model. 

With the help of simulation it is possible to get insight of these complex 

models.  
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To study the events that occur during an evacuation of a building discrete 

event simulation was used in this thesis. Previous work on the topic at hand 

have shown significant time related benefits when allowing people to use 

elevators as well as stairs when evacuating tall buildings [ref 2]. Unlike the 

previous work, the focus lies on studying smaller buildings, up to ten stories 

high. With the help of simulation, it is possible to get a better understanding of 

the potential gains of using the regular stairs alongside elevators during an 

evacuation. The purpose of this thesis is to study the differences in evacuation 

time when allowing people to use both stairs and elevators.  

 

 

1.3 Goals 

Ultimately the goal with this thesis was to study what kind of impact elevators 

would have during a building evacuation with different types of buildings. To 

do so, a simulation tool had to be developed. The tool would consist of two 

parts, one with a graphical interface which allows the user to define a building 

and a second part which actually ran the simulations. 

 

The graphical tool had to: 

 

 define a building with the help of a graphical interface 

 change the layout of the building 

 allow different testing parameters to be set  

 save a building to a file 

 load a building from a file 

 

The simulation tool had to: 

 

 run a simulation based on the building 

 provide useful statistics of the simulation 

 be verified to be correct 

 

Because of our previous knowledge with the Java programming language it 

was decided that all software development would be done in Java in order to 

save time. 

 

Since neither of us had any previous experience with simulation we had some 

goal of our own as well: 

 

 learn about discrete event simulation and how it could be applied to our 

work 
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 investigate different ways to represent a building in a graphical interface 

and how it can be used for a simulation 

 investigate different data structures to represent a building for a 

simulation 

 investigate different ways to represent people in a building and how 

they navigate in the building 

 

 

1.4 Limitations 

Due to time constraints and complexity, some simplifications were made. 

Most of them are related to the behaviours of the people in the building. In an 

evacuation where there is a real fire people act differently than they normally 

do. There are likely people who panic and act irrational, everyone just want to 

get out as fast as possible to safety.  

 

Such behaviours are not taken into account in this thesis. While such factors 

are important, the purpose of this thesis is to study the impact of elevators in 

an evacuation and not human behaviour. The simulations do not take such 

things into account; all people behave exactly the same. The goal for an 

individual in the simulation is to get out using a predetermined fixed path, thus 

a person queues as long as necessary in order to get out of the building. 

 

As mentioned earlier, using an elevator in a building which is on fire could be 

dangerous due to power outages, fire blockage etc. The simulations in this 

thesis only focuses on evacuations to the extent that it acts as a fire drill, there 

is no actual fire being simulated. More technical limitations are discussed in 

chapter 4.  
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2 Work plan 

In the beginning of the thesis a preliminary work plan was created. The plan 

contained several different phases. The phases were – a pre-study phase, an 

implementation phase, a test and verification phase and finally the final phase 

which would consist of final polish and report writing. Since the project work 

plan was not cast in stone the work plan was not followed strictly, but was 

rather followed with a more flexible approach. Sometimes jumps were made 

between phases in order to proceed more efficiently with the thesis.  

A more in depth overview of the constructed simulation tool, called Building 

Evacuation Simulation Tool (BEST), is described in chapter 4. 

 

 

2.1 Pre-study phase 

The pre-study phase mostly consisted of information gathering. Several papers 

and books about elevator traffic and elevators in general were found and 

studied [ref 3, 4, 5]. Afterwards an introduction to simulation was provided by 

Christian Nyberg who is the supervisor for this thesis. Christian, who is a 

lecturer for the advanced simulation course at LTH, provided course material 

from the simulation course and a private introduction lecture about simulation.  

 

Two home assignments about the development of simulation systems were 

done. These provided a good insight of how a simulation tool would have to 

be designed for this thesis. 

 

   

2.2 Implementation phase 

The implementation phase was divided into three stages (in order) – a GUI 

(Graphical User Interface) development stage, a simulation development stage 

and a last stage which combined both to a fully functional program. 

 

In the beginning of the GUI stage a lot of decisions were made since the GUI 

would define the rest of the program. Several different types of graphical 

layouts were discussed before finally choosing one that suited the project 

needs.  

 

The simulation development started after the base GUI was functional. In this 

stage functionality was created so that data from the GUI could be used to run 

a simulation.  
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In the final stage enhancements of both the GUI tool and the simulation part 

were made in order to improve the whole system. 

 

  

2.3 Test and verification phase 

In order to insure that the simulation tool provided correct results 

mathematical verifications were made. The different test cases (buildings) 

were simulated and their results studied. 

 

 

2.4 Source criticism 

The different information sources used in this thesis has either been from 

published articles or literature used in university computer science programs. 

Since the articles have been peer reviewed by others they have to be 

considered reliable. The books have been used in a wide range of university 

programs and are also considered reliable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

6 

3  Introduction to simulation 

 

 

3.1 Overview  

There are several ways to study a system. With different mathematical models 

it is possible to study some systems. For instance, it is possible to study 

population growth with various mathematical models. Another way to study a 

system is to simply observe or experiment with it. Consider a cashier queue at 

a grocery store. It is possible to observe and measure the queue in order to 

understand the system. 

 

There are many reasons why simulation is a good way to study a system [ref 

6]. Some systems are so complex that it becomes very difficult or even 

impossible to study them without a dynamic model. In such cases it is possible 

with the use of simulation to study the system.  

 

Consider the previous cashier example. This system requires a lot of time to 

test different types of scenarios. For example if one would want to study 

queue time differences between having one and two open cashiers it would 

require a lot of effort. Many measurements would have to be done before any 

conclusive results could be made. All these measurements require a significant 

time investment. With a computer such a simulation can be done many times 

in a very short period of time. Some systems may even be dangerous to 

experiment with or cost a lot of money in order to study them.  

These reasons among others are why simulation is an efficient tool to study 

and experiment with different systems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Different ways to study a system 
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3.2 Dynamical systems 

There are essentially three kinds of systems: 

 

 Continuous-time systems 

 Discrete-time systems 

 Hybrid systems 

 

In a continuous system the state variable changes in a continuous way. The 

state change in a continuous-time system cannot be done abruptly. An 

example of a continuous system is the temperature in an oven. These systems 

are often described with differential equations.  

 

In a discrete-time system a state can abruptly change to another. Such systems 

can be described by queues. 

 

Hybrid systems are systems that contain both continuous-time and discrete-

time subsystems. 

 

Since the simulation in this thesis is described by using queues, the system is 

discrete. 

 

 

3.3 Approaches to simulation 

There are two approaches to model a system for simulation, event scheduling 

and process interaction.  

 

 

3.3.1 Event scheduling 
In order to do an event scheduling simulation the systems different states 

needs to be analysed and defined. After this the different events that triggers 

the states needs to be defined. This is done in order to create rules which 

define how an event is handled. 

 

A simulation consists of different events being triggered at different times. In 

order to keep track of which events shall occur an event list is needed. The 

event list keeps the order sorted by the arrival time in ascending order.  

An event must contain a time and an event type. It is not unusual that an event 

also contain some kind of attribute (e.g. which state added the event).    
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Figure 3.2: An event list containing three events, sorted by time 

 

With the help of an event list it is now possible to perform a simulation.  

A simple simulation could look like the following: 

 

1. Pop the first event in the event list 

2. Update the simulation time to the event time 

3. Change state depending on the event type 

4. Execute current state and add new events if needed 

5. If the list is empty, quit, otherwise repeat steps 

 

 

3.3.2 Process interaction 
The event scheduling method and process interaction have a lot of in common 

but differ on a few key points. Process interaction simulations consist of 

processes. A process has some internal states and communicates with each 

other by sending signals. When a process receives a signal it treats the signal 

and various state changes and further signal sending may occur. If a signal is 

created, the sender must assign an arrival time to the receiver. 

 

A simulation consists of different processes treating signals. Just like with 

event scheduling, a list containing the signals is needed. This list is ordered by 

arrival time in ascending order. 

 

With the help of the signal list it is now possible to perform a simulation.  

A simple simulation could look like the following: 

 

1. Pop the first event in the signal list 

2. Update the simulation time to the arrival time 

3. Activate receiver process 

4. Process executes current state and sends new signals if needed 

5. If the list is empty, quit, otherwise repeat steps 
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4 Building Evacuation Simulation Tool (BEST) 

 

 

4.1 Overview  

The BEST system is a program written in the Java programming language 

with many classes working together. In this chapter a more in depth overview 

of the different components will be explained.  

 

 
Figure 4.1: An overview of the major system components in BEST 

 

The system is designed with three major parts that interact with each other to 

form the complete system. They are the GUI part, the graph and finally the 

actual simulation. The main workflow for the system is first to model a 

building with the GUI. While the building is actually being modelled, a graph 

is constructed containing the important data which is required in order to run a 

simulation. 

 

 

4.2 The GUI 

In the beginning of the implementation phase there were two main ideas for 

the GUI. One was a form of a cell based editor (which is sometimes used for 

2D game development. The idea was that it could be possible with the help of 

a number of cells to define a room. The room could then be connected with 
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other nearby rooms by performing some calculations. This way it would be 

possible to construct a building. 

 

The other idea was to use a canvas to draw different types of rooms (with 

shapes). It was then possible to connect rooms to each other to form a 

building.  

 

An early realisation was that both these methods could work to visually 

represent a building. However they both suffered from the problem that they 

were difficult to model with a data structure. They worked well visually but 

the transition from a visual model to a functional model that could be used for 

simulation made them unwanted. 

 

Instead of thinking of how to represent a building visually, the solution was to 

think of the functional representation of a building. With the help of a working 

functional model it would be easier to construct a visual one. 

 

An idea was to model buildings with the help of a graph. It would be easy to 

construct a graph and to represent it visually in a way that it resembles a floor 

in a building. 

 

  

4.2.1 Tabs 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: An overview of the tab layout used in BEST 
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The BEST system uses a tabbed layout to represent floors in a building. When 

the program is started only a single tab exists from the start, the information 

tab (info tab). In figure 4.2 the info tab is highlighted. With the help of this tab 

it is possible to create a new project, load an old project, save the current 

project and to extend the number of floors the project has. The generated tabs 

contain each a floor editor to model the building. 

 

 

4.2.2 Floor editor 
 

 
Figure 4.3: An overview of a floor 

 

In Figure 4.3 a floor editor is displayed with five nodes. Each node represents 

some kind of area. There are a total of four different placable nodes in BEST. 

They are 

 

 Room node (RoomVertex) 

 Stair node (StairVertex) 

 Elevator node (ElevatorVertex) 

 Escape node (EscapeVertex) 
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By placing nodes on each floor and connecting them with edges it is possible 

to form a model of a building. 

 

 
Figure 4.4: A conceptual representation of the floor in figure 4.3 

 

The edges represent hallways in some way between doors. Floors are 

connected to each other with stairs and elevators. 

 

A floor editor can perform five main operations: 

 

 Place nodes 

 Connect nodes to each other with edges 

 Move nodes and edges 

 Remove nodes and edges 

 Set and change properties of nodes and edges 
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4.3 The graph 

Once it became clear that a graph would be needed in order to construct a 

building it was realised that writing a custom made graph would not be 

necessary since there would likely exist graph libraries on the internet. 

Unfortunately the libraries that were found online were surprisingly difficult 

to use. Because all computer engineering students at LTH Campus 

Helsingborg take the course Algorithms and Data structures it was 

remembered that the course literature had a robust chapter on graph theory [ref 

7]. This chapter also contained a fully functional graph class that was easy to 

use. Even though it was fully functional, several big adjustments had to be 

made in order to suit the BEST system. 

 

 

4.3.1 From a building to a graph 
Consider a graph G = (V, E) where V is the set of vertices and E is the set of 

edges. Consider now a simplified building model which can be said to have a 

set of rooms that are connected to each other. Such a building can be 

represented by a graph, where the rooms represent vertices and the distance 

between them are the edges. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: A building with two floors represented as a graph. Notice the 

single direction between stairs due to technical implementation in BEST 
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The graph in Figure 4.5 has five vertices, 

 
 2,1,2,1, stairstairroomroomescV   

 

and seven edges, 

 










1) esc, (stair1,

10) stair1, (stair2,6), room2, (stair2,

6), stair2, (room2,4), stair1, (room1,

4), room1, (stair1,

 1), stair1, (esc,
E  

 

With a functional graph it is easy to traverse it and calculate paths for people 

to use. Consider for example a person standing in room2 in Figure 4.5. In 

order to calculate a path from room2 to the exit (esc) Dijsktra’s shortest path 

algorithm can be used.  

 

Since the BEST system would need four different placeable node types 

containing unique data for each type. Four sub classes were created with the 

original Vertex acting as the super class.  

 

When a node is created in the floor editor it is added to the graph (this is 

possible since all placable nodes inherit from Vertex). The different nodes can 

then be connected to each other by adding edges with a cost, which represent 

the distance between the nodes. When an edge is added to the graph, it is 

added both ways. However between two stairs they are not added both ways. 

This was an early design decision for BEST since during an evacuation 

normally people only move down in the building. 

 

 

4.4 The simulation 

A building evacuation can be described with the help of queues. When people 

move in the building, different queues arise. A door in a room or the stairs of a 

floor is a typical place where large queues form up. The BEST system uses 

discrete event simulation for this reason. The simulation method was chosen 

to be process interaction since the simulation is based on many processes 

sending signals to each other. 

 

 

4.4.1 From a graph to a simulation 
In order to simulate a building, a valid graph is needed. A valid graph must 

contain at least one exit (EscapeVertex) and for each room (RoomVertex) 

there must be a path leading to an exit. Before the simulation can run all the 

data created by the user must be collected and processed. The goal for a 
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person in a building is to use its assigned path to reach the exit. A simulation 

will end when all the persons in the building has reached their exit. To fully 

understand how the simulation works a brief explanation of the different nodes 

is needed. The nodes are: 

 

 Vertex 

 RoomVertex 

 StairVertex 

 ElevatorVertex 

 EscapeVertex 

 

The Vertex is the super class for all other vertices. It contains attributes which 

all types of vertices have in common and information needed in order to build 

a proper graph. A Vertex has a priority queue containing persons. It also 

contains different measurement variables and level of service (LOS) variable. 

The LOS variable describes how many persons a queue can work with at the 

same time. For example, say that a Vertex has a LOS of 2. This means that the 

door in the room can only service a maximum of 2 people at a time. The 

measurement variables and priority queue will be discussed in further detail 

later in this chapter. 

 

The RoomVertex is the only node in the graph where people can exist in the 

beginning of a simulation. A room has a certain width and height (area), a max 

number of people in it which is used in case a random number of persons 

should be generated. If a random number is not wanted it is possible to set a 

fixed number instead. A percentage can also be set to indicate how many from 

the specified room should use an elevator. If wanted, a room can be set not to 

generate any persons in the beginning of a simulation. 

 

The StairVertex and ElevatorVertex are used to connect floors with each 

other. If a building is constructed with more than one floor stairs or elevators 

are needed in order to build a valid graph. 

 

EscapeVertex is the final destination for each person. Like with all real life 

buildings a building must contain at least one exit. 

 

Before the simulation start all the persons in the building need to know what 

path they should take. This is done by evaluating the layout of the current 

floor. Say for instance that a floor has two different stairs and the building has 

two different exits. Then the persons generated on the floor will be equally 

split among all the stairs and exits. The same applies for buildings with 

elevators as well. A person has a random walking speed between 0.5 and 1. 

When walking 
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between two stairs then speed is half the normal one. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: The person distribution for a room between two stairs and exits 

 

A RoomVertex has a width and height. This allows persons to be placed at a 

random position in a room. To simplify calculations in BEST, each room has a 

door set at the upper left corner. Since it takes a certain time to reach the door 

in a room a person’s path list will always begin with a path to the same room 

with a distance to the door. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: Room1 containing two persons. Their path list is displayed 
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When the persons in the rooms have been generated the simulation can begin. 

 

 

4.4.2 Signals and the signal list 
A signal contains a type, a destination, an arrival time and a person. 

The BEST system uses six types of different process signals. They are: 

 

1. Arrival 

2. Ready 

3. Measure 

4. Pickup 

5. Down 

6. Release 

 

Signals 4-6 are elevator specific and will be treated in the next section.  

 
public void TreatSignal(Signal x) { 

 switch (x.signalType){ 

 case ARRIVAL: 

  numberInQueue++; 

  if(numberInQueue > los) { 

   person.add(new PersonContainer(x.person, x.arrivalTime)); 

   x.person.updateTimes(this); 

  } 

  else { 

   x.person.updateTimes(this); 

   SignalList.SendSignal(READY, this, time + 1, x.person); 

  } 

 break; 

 case READY: 

  numberInQueue--; 

  Vertex current = x.person.currentDestination(); 

  Vertex dest = x.person.nextDestination(true); 

 

  if(dest != null) { 

   if(dest instanceof StairVertex && current instanceof StairVertex) { 

    SignalList.SendSignal(ARRIVAL, dest, 

            time +(x.person.getDestinationCost() / x.person.getStairSpeed()), x.person); 

 

   } 

   else { 

    SignalList.SendSignal(ARRIVAL, dest, 

            time + (x.person.getDestinationCost() / x.person.getNormalSpeed()), x.person); 

 

   } 

  } 

  else if(this instanceof EscapeVertex) { 

   x.person.updateTimes(this); 

   count++; 

  } 

  if(!person.isEmpty()) { 

   SignalList.SendSignal(READY, this, time + 1.0, person.poll().p); 

  } 

 break; 

 case MEASURE: 

  noMeasurements++; 

  accumulated = accumulated + numberInQueue; 

  SignalList.SendSignal(MEASURE, this, time + 2, null); 

 break; 

 } 

} 

Figure 4.8: The TreatSignal method in Vertex 
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When signal is sent to a Vertex the TreatSignal method is invoked. There are 

three states that can occur. 

 

If the treated signal is of type arrival then the number of people in the queue is 

increased. If the number of people in the queue is greater than the level of 

service then the person is added to queuing list. Otherwise it sends a new 

signal to the same process in ordered to be served (in other words the person is 

ready to walk through the door). 

 

When a ready signal arrives the number of persons in the queue is decreased.   

A check is made to establish whether the person has reached the final 

destination. If not, then the person is sent to its next destination. Before 

leaving the vertex, the person next in the queue is alerted that the queue is now 

ready to serve. 

 

The measure signal is an independent signal that measures the activity in the 

queue. 

 

The signal list is globally available for all processes in the system. This allows 

vertices to send signals between each other. Just like described in the 

simulation chapter, the signal list is sorted by arrival time.  

 

 

4.4.3 ElevatorVertex and Elevator 
There are two types of elevator modes in BEST, a normal mode and an 

emergency mode. The elevator has a priority queue with destinations (a 

destination is a call from a floor with a certain time). Depending on which 

mode is selected different priorities are made. In normal mode the queue is 

sorted by time in ascending order while in the emergency mode the sorting is 

made by floors in descending order. When a simulation begins all elevators 

are located on the bottom floor. When a call to an elevator in normal mode is 

received the following happens: 

 

1. Add the call to the destination list 

2. If the elevator is not busy pop the first element in the queue 

3. Pickup at the popped destination 

4. If there are destinations below the current one, go to those floors 

5. Release the persons at the bottom floor 

 

In normal mode, even if the elevator is at max capacity it will make stops at 

lower floors. In emergency mode no such stops will occur in order to save 

time. 
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The ElevatorVertex uses a modified method call of TreatSignal in order to 

function properly. If the ElevatorVertex is on the bottom floor, the TreatSignal 

call works the same way as in any other Vertex; otherwise a queue to the 

elevator is formed. Many ElevatorVertex objects share a special elevator class 

with each other in order to form a working elevator. This elevator class uses a 

heavily modified TreatSignal method. 

 
public void TreatSignal(Signal x) { 

 switch(x.signalType) { 

 case ARRIVAL: 

  dests.add(new DestinationContainer(x.person.getFloor(), x.arrivalTime, 

emergency)); 

  if(dests.size() == 1 && theOne == null) { 

   SignalList.SendSignal(READY, this, time, x.person); 

  } 

  break; 

 case READY: 

  theOne = dests.poll(); 

  SignalList.SendSignal(PICKUP, this, time +      

 ((theOne.getDestination()*cost)/speed), x.person); 

  break; 

 case PICKUP: 

  ElevatorVertex current = null; 

  for(ElevatorVertex e : ev) { 

   if(e.getFloor() == theOne.getDestination()) { 

    current = e; 

    break; 

   } 

  } 

  int count = 0; 

  PersonContainer p; 

  do { 

   p = current.pop(); 

   if(p != null) { 

    count++; 

    persons.add(p.p); 

   } 

  } while(count < capacity && p != null); 

 

  SignalList.SendSignal(READY, current, time, x.person); 

  next = new DestinationContainer(-10, -10, emergency); 

  for(DestinationContainer d : dests) { 

   if(d.getDestination() < theOne.getDestination()) { 

    next = d; 

    break; 

   } 

  } 

  if(next.getDestination() == -10) { 

   SignalList.SendSignal(RELEASE, this, time + (count/current.getLos()) + 

   ((theOne.getDestination()*cost)/speed), x.person); 

  } 

  else { 

   if (emergency) { 

    if (persons.size() >= capacity) 

     SignalList.SendSignal(RELEASE, this, time + 

 (count/current.getLos()) + ((theOne.getDestination()*cost)/speed), x.person); 

    else 

     SignalList.SendSignal(DOWN, this, time + 

(count/current.getLos()) + (((theOne.getDestination()-next.getDestination())*cost)/speed), 

   x.person); 

   } 

   else 

    SignalList.SendSignal(DOWN, this, time + (count/current.getLos()) + 

  (((theOne.getDestination()-next.getDestination())*cost)/speed), x.person); 

  } 

 

  break; 

 case DOWN: 

  counter++; 

  if(persons.size() >= capacity) { 

   last = new DestinationContainer(next.getDestination(), next.getTime(), 

   emergency); 
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   int save = next.getDestination(); 

   next.setDestination(-10); 

 

   for(DestinationContainer d : dests) { 

    if(d.getDestination() < last.getDestination()) { 

     next = d; 

     break; 

    } 

   } 

   if(next.getDestination() == -10) { 

    next.setDestination(save); 

    SignalList.SendSignal(RELEASE, this, time + 3 +   

 ((last.getDestination()*cost)/speed), x.person); 

   } 

   else { 

    SignalList.SendSignal(DOWN, this, time + 3 +  

 (((last.getDestination()-next.getDestination())*cost)/speed), x.person); 

   } 

  } 

  else { 

   dests.remove(next); 

   last = new DestinationContainer(next.getDestination(), next.getTime(), 

   emergency); 

   next.setDestination(-10); 

   ElevatorVertex curr = null; 

   for(ElevatorVertex e : ev) { 

    if(e.getFloor() == last.getDestination()) { 

     curr = e; 

     break; 

    } 

   } 

   int counter = 0; 

   PersonContainer pc; 

   do { 

    pc = curr.pop(); 

 

    if(pc != null) { 

     counter++; 

     persons.add(pc.p); 

    } 

   } while(counter < capacity && pc != null); 

   SignalList.SendSignal(READY, curr, time, x.person); 

   for(DestinationContainer d : dests) { 

    if(d.getDestination() < last.getDestination()) { 

     next = d; 

     break; 

    } 

   } 

   if(next.getDestination() == -10) { 

    SignalList.SendSignal(RELEASE, this, time + (counter/curr.getLos()) 

    + ((last.getDestination()*cost)/speed), x.person); 

   } 

   else { 

    SignalList.SendSignal(DOWN, this, time + (counter/curr.getLos()) + 

  (((last.getDestination()-next.getDestination())*cost)/speed), x.person); 

   } 

  } 

  break; 

 case RELEASE: 

  for(Person per : persons) { 

   SignalList.SendSignal(ARRIVAL, first, time +  

 (persons.size()/((ElevatorVertex) first).getLos()), per); 

  } 

  persons.clear(); 

  if(dests.size() > 0) 

   SignalList.SendSignal(READY, this, time +  

 (persons.size()/((ElevatorVertex) first).getLos()), x.person); 

  theOne = null; 

  next = null; 

  last = null; 

  break; 

 case MEASURE: 

  break; 

 } 

} 
Figure 4.9: The TreatSignal method in Elevator 
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When a signal is sent from an ElevatorVertex to an Elevator there are five 

states that can occur (technically six with measure, although it is not used). 

Unlike other signals, the signal to an elevator contains a destination instead of 

a person  because an elevator is a moving queue and people cannot be served 

unless the elevator is at the same floor as them. 

 

The arrival state works the same way as in Vertex. When an elevator call with 

a destination arrives it is added to the queue and treated if the elevator is not 

busy.  

 

The ready signal pops the queue and serves the popped element. This means 

that the elevator just released people and is ready for a new destination. 

 

In the pickup state the elevator has arrived to its destination. The elevator gets 

filled with people until the max capacity is reached or the people queue 

becomes empty. If emergency mode is set the elevator will only stop and 

pickup people at lower levels if the max capacity is not reached. In normal 

mode the elevator stops at each lower floor where a call has been made even if 

max capacity has been reached. 

 

The down signal is essentially the same as the pickup state. If the elevator has 

reached max capacity only a door opening will occur. 

 

When a release signal is treated all the people in elevator will be sent to the 

bottom ElevatorVertex’s queue. From there on, people will move normally 

again. If the destination list in the elevator is not empty, the whole process will 

be repeated.  

 

4.4.4 Main simulation loop 
ArrayList<Vertex> all = this.getAllVertices(); 

for(Vertex v : all) { 

 if(v instanceof RoomVertex) { 

  ((RoomVertex) v).init(); 

 } 

 else { 

  SignalList.SendSignal(Global.MEASURE, v, Global.time, null); 

 } 

} 

for (Person p : persons) { 

 SignalList.SendSignal(Global.ARRIVAL, p.getStart(), Global.time + 

 (p.getDestinationCost() / p.getNormalSpeed()), p); 

} 

while(Global.count < persons.size()) { 

 actSignal = SignalList.FetchSignal(); 

 Global.time = actSignal.arrivalTime; 

 actSignal.destination.TreatSignal(actSignal); 

} 

Figure 4.10: The main simulation loop 

 

When a valid graph has been constructed the simulation can start. The 

simulation can be described as the following: 
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1. Initialize all rooms and begin to measure each vertex 

2. Send the first arrival in every person’s path 

3. Pop the first signal in the signal list 

4. Set current time to signal arrival time 

5. Invoke TreatSignal for the next destination 

6. If there are people left in the building, repeat from step 3 

 

When the simulation is complete BEST presents a list of relevant simulation 

data. 

 
================ 1 ===================== 

Room  Time  ActTime QTime 

room1  4,57  4,57  0 

exit  5,71  6,71  0 

 

Total time:    12,28 

Total qtime:   0 

Avg time per room:  6,14 

Avg qtime per room:  0 

======================================== 

 

================ 0 ===================== 

Room  Time  ActTime QTime 

room1  4,99  4,99  0 

exit  8,32  9,9   0,58 

 

Total time:    15,89 

Total qtime:   0,58 

Avg time per room:  7,95 

Avg qtime per room:  0,29 

======================================== 

 

Number of persons:  2 

Avg persons per floor: 2 

Total simulation time: 15,89 

Total queue time:  0,58 

Avg time per person: 14,09 

Avg qtime per person: 0,29 

Figure 4.11: The output of a simulation with two persons in one room and exit 

 

BEST can also produce optional data such as the entire signal list and 

individual signal list for each person. Such data can be interesting to study 

when a more in depth overview of an evacuation is needed. 
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4.4.5 Technical information 
In order for the queues to work properly they have a fixed service time. For 

instance, in a room this time represents the time it takes to pass through the 

door. For RoomVertex, StairVertex and EscapeVertex this time is set to 1.  

For elevators the service time is based on the number of persons entering the 

elevator and the elevators LOS plus a constant value for opening and closing 

the doors. This constant is set to 3. For people that get out of the elevator there 

is only a door opening and thus the constant is half of the original value. For 

the tests that were made in Chapter 6 cubic rooms were used. Because each 

person have a randomly selected walking speed it is possible for persons to 

walk pass each other in queues.  

Before a simulation begins, each room distributes travel paths to all people 

and each room has a percentage set which sets the total amount of people that 

goes to the elevator. For instance, if a room has 10 people and 5% is set to go 

to the elevator then 0 people will go to the elevator (because of rounding). If 

instead 19% would, 1 person would go. BEST is written without threads. 

 

 

4.4.6 Technical limitations 
There are some technical limitations in BEST that are important to understand. 

 

Each person is given a fixed travel path. This path is never changed during a 

simulation. This means that people will queue as long as necessary in order to 

take their path even if there might be a better nearby path with less queue 

time. This does not affect the outcome of the main analysis since all people 

behave the same way, even if they use a stair or an elevator. 

 

People can only move down in a building. When a connection between two 

stairs is made in the graph, it is only made one way, from the high stair to the 

low one. The same is somewhat conceptually true for an elevator. A person 

can never enter the elevator on the bottom floor and exit at another. 

 

An elevator always is set always to the first floor in the beginning of the 

simulation and exits may only be placed at the first floor. 

 

Because rooms are connected to each other with the graph, the distance 

between them is always the same. This means that all persons that walk the 

same path will have the exact same walking distance. In a real life example, if 

two people walk along side each other in a curved hallway, their walking 

distance will not be the same. 

 

In BEST a building can have several elevators side by side on each floor. They 

will however not work together; they all operate independently of each other. 
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5 Verification of BEST 

Before studying the simulation data provided by BEST it is very important to 

verify the correctness of it. Even though the data might appear to be correct it 

is still important to actually verify it. In fact all simulations programs must be 

verified to be correct and BEST is no exception. It is possible with different 

mathematical approaches to verify the correctness of the simulation. Since the 

BEST system uses queues for the simulations regular queuing theory can be 

applied to validate the accuracy of the system.   

 

 

5.1 Modifications 

Since the simulations done by BEST are based on a finite amount of people in 

a building some small changes had to be done in order to be able to verify the 

correctness of the system. If a lot of changes are done to a system in order to 

verify it then only the modified system will be verified and not the actual 

system. 

 

In order to verify the simulations the following was changed: 

 Instead of a room generating a fixed amount of persons, a generator 

was added to each room. The generator sent a new person to the room 

with exponential distribution delay with a mean value of 1/λ. 

 The generator sent a person directly to the door. 

 A person no longer had a random speed; instead a constant value of 1 

was given. 

 The serving time in every queue was set to an exponential distributed 

delay with a mean value of 1. 

 The distance between the queues for each person was exponential 

distributed with a mean of the given cost between the queues. 

 Instead of showing individual results of each person, the simulation 

now showed the average number of persons in every queue. 

 

With the help of queuing theory these changes allowed verification of the 

system. The exponential distribution function has the nice property of being 

memoryless which simplifies the verification calculations.   

 

These changes did not affect how the queues worked in general and thus did 

not impact the system in any significant way. This implies that if the modified 

system is shown to be correct, then the original system is also correct. 
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5.2 The verification tests 

To verify the BEST system four different verification tests were made. For 

each test four different values on λ were used. The different tests were then 

simulated and the results compared with theoretical ones. Instead of ending 

the simulation after a certain amount of time, the tests ended when a specific 

amount of people had exited the building. 

 

 

5.2.1 Theoretical calculations 
In order to verify the system some theoretical values needed to be calculated 

and then compared with results from the simulations. The following formulas  

were used: 

 







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N  ,  




 

 
 

where N is the average number of people in a queue, ρ is the average time a is 

queue busy, λ is the arrival intensity and µ the serving for a queue [ref 8]. 

 

 

5.2.2 Verification test 1 

 
Figure 5.1: A queuing network with one room and one exit  

 

µ1 = µ2 = 1 

 

Each test ran until 100 000 persons had exited the building. Each test was 

repeated 250 times and the average values were calculated. 

 

λ µ ρ Theoretical 

N 

Simulated N 

q1 

Simulated N 

q2 

0.2 1 0.2 0.25 0.25011 0.25001 

0.5 1 0.5 1 0.99985 1.00033 

0.8 1 0.8 4 3.97880 3.98411 

0.9 1 0.9 9 8.96887 9.05950 
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5.2.3 Verification test 2 
 

 
Figure 5.2: A queuing network with two rooms and one exit 

 

µ1 = µ2 = µ3 = 1 

  

Each test ran until 100 000 persons had exited the building. Each room 

generated 50 000 persons each. Each test was repeated 250 times and the 

average values were calculated. 

 

λ1 µ ρ Theoretical 

N 

Simulated N 

q1 

Simulated N 

q2 

0.1 1 0.1 0.11111 0.11074 0.11051 

0.25 1 0.25 0.33333 0.33267 0.33260 

0.4 1 0.4 0.66667 0.66631 0.66418 

0.45 1 0.45 0.81818 0.81440 0.81584 

 

 

Because there are two queues sending people to q3, q3’s λ will be doubled. 

 

λ2 µ ρ Theoretical N Simulated N 

q3 

0.2 1 0.2 0.25 0.24947 

0.5 1 0.5 1 0.99360 

0.8 1 0.8 4 3.99213 

0.9 1 0.9 9 8.97835 
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5.2.4 Verification test 3 
 

 
 

Figure 5.3: A queuing network with two rooms and one exit  

 

µ1 = µ2 = µ3 = 1 

 

Each test ran until 100 000 persons had exited the building. Since q1 is the 

only room with a generator it generates all persons. Each test was repeated 

250 times and the average values were calculated. 

 

λ µ ρ Theoretical 

N 

Simulated N 

q1 

Simulated N 

q2 

Simulated N 

q3 

0.2 1 0.2 0.25 0.25003 0.24976 0.24999 

0.5 1 0.5 1 1.00645 1.00001 0.99950 

0.8 1 0.8 4 3.99011 3.99050 4.00531 

0.9 1 0.9 9 8.95008 8.98131 8.84814 

 

 

5.2.5 Verification test 4 
 

 
 

Figure 5.4: A queuing network with two rooms and one exit  

 

µ1 = µ2 = µ3 = 1 

 

Each test ran until 100 000 persons had exited the building. Each room 

generated 50 000 persons each. Each test was repeated 250 times and the 

average values were calculated. 
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λ1 µ ρ Theoretical N Simulated N 

q1 

0.1 1 0.1 0.11111 0.11097 

0.25 1 0.25 0.33333 0.33246 

0.4 1 0.4 0.66667 0.66381 

0.45 1 0.45 0.81818 0.81535 

 

Because q2 gets persons from both q1 and a generator, q2’s λ will be doubled. 

Since q3 is affected by q2, q3’s λ will be doubled as well. 

 

 

λ 2 µ ρ Theoretical 

N 

Simulated N 

q2 

Simulated N 

q3 

0.2 1 0.2 0.25 0.24923 0.24954 

0.5 1 0.5 1 0.99578 0.99514 

0.8 1 0.8 4 3.96403 3.99758 

0.9 1 0.9 9 8.89662 8.90404 

 

 

5.2.6 Elevator verification 
The previous verification tests were made with no elevators. In order to verify 

elevators in BEST a different approach was used since the elevators do not 

behave in the same manner as a normal queue (an elevator is a “dynamic 

queue”).  

 

To verify elevators Little’s Law was used. Little’s Law states that the average 

number of people in a queue system is equal to arrivals per second times the 

average time spent in the system. 

 

(Little’s Law) 

 

 
 

Figure 5.5: A queuing network with one room, one elevator, stair and exit  

 

 

 

TN  
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λ = λ1 = 0.2 

µ1 = µ2 = µ3 = µ4 = µ5 = µ6 = 1 

 

Each test ran until 100 000 persons had exited the building. Since q1 is the 

only room with a generator it generates all persons. Every other person was 

sent to q2. Each test was repeated 250 times. 

 

During the test the time (T ) and the average number of people in the building 

( N ) was measured.  

 

T  = 34.62101 

N  = 6.92338 

 

According to Little’s Law the average number of persons in the house would 

be 

 

 

 

 

5.2.7 Conclusion of verifications  
From all the different verification tests no major deviation between the 

theoretical results and the simulated results were found. Since the modified 

system has shown to be correct it implies that the original one is correct as 

well.  
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6 Test cases 

To study the differences between evacuation times four buildings were 

modelled; a small, medium, large and an extended medium building. Each 

building was simulated several times, with an increasing percentage of people 

choosing an elevator to exit the building. In this way it was possible to plot a 

full scale graph from 0% usage to 100%. All floors in a building are identical, 

with the exception of the first floor which has a number of exits. 

 
Building size Small Medium Large Extended 

Medium 

Number of floors 3 5 10 10 

Number of stairs 1 1 2 1 

Number of 

elevators 

1 2 4 2 

Number of exits 1 2 4 2 

Persons per floor 20 200 400 200 

Rooms per floor 3 10 20 10 

Elevator capacity 5 10 15 10 

Elevator speed 1 1.25 1.5 1.25 

Height between 

floors 

3 3 4 3 

Stair length 6 6 8 6 

LOS elevator 2 2 2 2 

LOS stair 2 2 2 2 

LOS rooms 1 1 2 1 

LOS exit 2 2 3 2 

Number of 5x5 

rooms 

6 20 0 40 

Number of 7x7 

rooms 

0 15 0 30 

Number of 9x9 

rooms 

0 0 80 0 

Number of 10x10 

rooms 

3 15 80 30 

Number of 12x12 

rooms 

0 0 40 0 

Number of 

simulations per % 

25 000 25 000 1000 10000 

Figure 6.1: Building description of the test cases 
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Room type Number of persons in room 

5x5 5 

7x7 10 

9x9 15 

10x10 20 

12x12 30 

Figure 6.2: Room capacity overview in the test cases 

 

Due to the complexity of the large and the extended medium building the 

simulations per percent had to be lowered. 

 

6.1 The small building test 

 
Figure 6.3: Building layout of the small building (first floor is shown) 
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Figure 6.4: Total evacuation time for the small building 

 

 

 

 

 

 

 
Figure 6.5: Average evacuation time per person in the small building 
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Figure 6.6: Average queue time per person in the small building 

 

 

6.1.1 Results summary of the small building 
Figure 6.4 show that there are some very small time gains around when 20% - 

40% use the elevator. When the percentage of people that use the elevator 

increases, large queues form up in front of the elevator. Since the elevator has 

a small capacity people have to wait a long time in order to get out.  

 

 

6.2 The medium building test 

 
Figure 6.7: Building layout of the medium building (first floor is shown) 
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Figure 6.8: Total evacuation time for the medium building 

 

 

 

 

 

 

 
Figure 6.9: Average evacuation time per person in the medium building 
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Figure 6.10: Average queue time per person in the medium building 

 

 

6.2.1 Results summary of the medium building 
Figure 6.8 show that there are significant time gains when 10% - 25% use the 

elevator, up to 60 seconds faster. Around these percentages the elevator 

capacity works well with the amount of arriving. When the percentage of 

people that use the elevator increases, large queues form up in front of the 

elevator and increase the total evacuation time. 

 

 

6.3 The large building test 

 
Figure 6.11: Building layout of the large building (first floor is shown) 



 

 

36 

 
Figure 6.12: Total evacuation time for the large building 

 

 

 

 

 

 

 
Figure 6.13: Average evacuation time per person in the large building 
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Figure 6.14: Average queue time per person in the large building 

 

 

6.3.1 Results summary of the large building 
The simulations produced some interesting results. The total evacuation time 

shown in Figure 6.12 did not show any time gains when allowing people to 

use the elevators. However the average time a person spends in the building, 

shown in Figure 6.13, is lowered when around 5-10% uses the elevator.  

 

 

6.4 The extended medium building test 

 
Figure 6.15: Building layout of the extended building (first floor is shown) 
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Figure 6.16: Total evacuation time for the extended building 

 

 

 

 

 

 

 
Figure 6.17: Average evacuation time per person in the extended building 
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Figure 6.18: Average queue time per person in the extended building 

 

 

6.4.1 Results summary of the extended building 
The simulations of the extended medium building produced results similar to 

the medium building. Like in the medium building, Figure 6.16 show that 

there are significant times gains when 5% - 15% use the elevator, up to 120 

seconds faster. 
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7 Conclusions 

 

The tests performed in chapter 6 suggest that the architecture of a building and 

elevator properties play a big part on the evacuation times. The sudden jumps 

in the graphs are due to the fact that BEST rounds down the amount of people 

going to the elevators (this is described in detail in Chapter 4.4.5).  Three of 

the buildings showed improvements in evacuation times whereas only two of 

them were significant enough to be of importance.  

 

The emergency elevator mode always performed better than the regular 

elevator in respect to the total evacuation time. However in the emergency 

mode the average queue time and average time spent in a building was higher 

than in regular mode. This is because an elevator in emergency mode does not 

pickup people after when they called for the elevator but rather which floor the 

call was made from. This means that people on lower floors will always have 

to queue a long time since the elevator picks people up on the higher floors 

first. 

 

The results from the large building suggest that there is not a clear connection 

between the average time spent in a building and the total evacuation time. It 

is hard to say exactly why the total time evacuation graph looks like it does, 

but one theory is that the layout of the building combined with the elevator 

properties are not suited well for evacuation with elevators.   

 

From the data produced in the tests it is not possible to draw any solid 

conclusions about the benefits of elevator usage in smaller buildings. In all but 

one of the test cases elevators improve evacuation times when a low 

percentage of people use the elevators. As the percentage grows it has a 

negative impact on the evacuation. As mentioned, the data suggest that the 

architecture of a building and elevator properties play a major part in the 

evacuation times.  
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8 Further work 

Many of the technical limitations in BEST were a result of time constraints. A 

future project would be to allow dynamic paths and decision making for 

people inside building. This would be interesting to simulate since people 

normally do not stay in a queue forever if there is a better alternative path. In 

BEST people stay in a queue as long as needed. This means that if a person on 

the top floor in a large building decides to use an elevator during an 

evacuation, the person is willing to wait a very long time for it to arrive. In a 

real life situation the person would probably look for another route out of the 

building after such a long period of waiting. 

 

The gathered test results suggest that the design of a building has a great 

impact on the evacuation. The buildings in the test cases were made up and 

not based on any real data. It would be interesting to run simulations on real 

building data since the design of a building have such a great impact on the 

evacuations. 

 

In future simulations elevators should be able to collaborate with each other in 

order to achieve optimal performance.  
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9 Terminology 

 

BEST – Building Evacuation Simulation Tool, the tool created in this thesis 

 

Discrete event simulation – A simulation of events ordered by time 

 

Edge – The connection between two edges 

 

Graph – A collection of a set of vertices and edges 

 

GUI – Graphical User Interface  

 

Level of service – The amount of people that can be served in a queue 

 

Simulation – A way to study a system using a computer  

 

Vertex – The central building unit of a graph 
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