

Simulation of Building
Evacuation

LTH School of Engineering at Campus Helsingborg
Computer Engineering

Bachelor thesis:
Anton Botvalde
Mats Lundkvist

 Copyright Anton Botvalde, Mats Lundkvist

LTH School of Engineering
Lund University
Box 882
SE-251 08 Helsingborg
Sweden

LTH Ingenjörshögskolan vid Campus Helsingborg
Lunds universitet
Box 882
251 08 Helsingborg

Printed in Sweden
Media-Tryck
Biblioteksdirektionen
Lunds universitet
Lund 2012

Preface

This bachelor thesis has taken place during the spring of 2012 at LTH Campus

Helsingborg. The work has been focused around simulation software

development. The thesis is the final part of the computer engineering program

at Lund Tekniska Högskola Campus Helsingborg.

It has been very rewarding to learn about simulation and to develop a

simulation tool. We would like to thank our supervisor Christian Nyberg for

all his support during this thesis, especially in the early stages of the thesis

when he introduced us to the world of simulation.

“I would like to thank my family and friends for all their support during my

years at LTH. I especially want to thank Fredrik Persson and his family for

always helping me to prepare for the exams that I had. I also want to thank

Mats Lilja for all the interesting conversations we have had during my time at

Campus Helsingborg. I will miss them!”

- Anton Botvalde

“I would like to thank my family and friends for all their support during my

years at LTH.”

- Mats Lundkvist

Helsingborg, May 2012

Abstract

This thesis describes the development of a discrete event building evacuation

simulator using the Java programming language and the various results that

were produced from the simulations that were done. The simulator allows

people to evacuate a building which has been defined via a graphical interface.

People are then split into two groups, those who use elevators and those who

do not. The program provides various statistics based on the simulation that

was done.

Due to safety concerns, during a building evacuation only stairs are used to

evacuate a building. This often leads to huge queues forming up and could

potentially be avoided by allowing elevators to take some of the load of the

stairs. After the 9/11 attacks in 2001 there have been some debate about

changing the evacuation procedures for tall buildings. There have been

previous work done on simulation of tall buildings evacuation and big time

related gains were shown by allowing people to use elevators. This thesis

concentrates around evacuation of smaller buildings, up to ten stories high.

The results of the thesis show that faster evacuations are possible with

elevators in smaller buildings, although further research is required to

generalize the results.

Keywords: Discrete event simulation, building evacuation simulation,

simulation in Java, elevator simulation, elevators

Sammanfattning

Det här examensarbetet beskriver utvecklingen av en diskret händelsestyrd

byggnadsutrymningssimulator med hjälp av programmeringsspråket Java samt

de olika resultat som togs fram med hjälp av simuleringarna. Simulatorn

tillåter människor utrymma en byggnad som har blivit definierat med hjälp av

ett grafiskt gränssnitt. Människor delas sedan upp i två grupper, de som

använder hissar och de som använder trappor under en utrymning.

Programmet tillhandahåller diverse statistik baserad på simuleringen som

utförts.

På grund av säkerhetsskäl används enbart trappor under en

byggnadsutrymning. Detta leder ofta till att stora köer formas och kan

potentiellt undvikas genom att låta hissar användas för att minska köerna i

trapporna. Efter attackerna 11/9 2001 har en viss debatt förekommit angående

ändringar av utrymningsprotokollen för höga byggnader. Det finns tidigare

arbeten på utrymningssimuleringar av höghus och stora tidsrelaterade fördelar

har påvisats genom att tillåta folk använda hissar. Detta examensarbete

fokuserar på utrymning av mindre byggnader, upp till tio våningar höga.

Resultatet av examensarbetet påvisar att det är möjligt att uppnå snabbare

evakueringstider med mindre byggnader med hjälp av hissar, men mer arbete

krävs för att generalisera resultatet.

Nyckelord: Diskret händelsestyrd simulering, byggnadsutrymnings

simulering, simulering i Java, simulering av hissar, hissar

List of contents

1 Introduction ... 1

1.1 Background ... 1

1.2 Problem description ... 1

1.3 Goals .. 2

1.4 Limitations ... 3

2 Work plan ... 4

2.1 Pre-study phase .. 4

2.2 Implementation phase .. 4

2.3 Test and verification phase .. 5

2.4 Source criticism .. 5

3 Introduction to simulation .. 6

3.1 Overview .. 6

3.2 Dynamical systems ... 7

3.3 Approaches to simulation .. 7

3.3.1 Event scheduling .. 7

3.3.2 Process interaction ... 8

4 Building Evacuation Simulation Tool (BEST) 9

4.1 Overview .. 9

4.2 The GUI .. 9

4.2.1 Tabs ... 10

4.2.2 Floor editor ... 11

4.3 The graph .. 13

4.3.1 From a building to a graph .. 13

4.4 The simulation .. 14

4.4.1 From a graph to a simulation .. 14

4.4.2 Signals and the signal list ... 17

4.4.3 ElevatorVertex and Elevator ... 18

4.4.4 Main simulation loop ... 21

4.4.5 Technical information ... 23

4.4.6 Technical limitations ... 23

5 Verification of BEST .. 24

5.1 Modifications ... 24

5.2 The verification tests .. 25

5.2.1 Theoretical calculations .. 25

5.2.2 Verification test 1 .. 25

5.2.3 Verification test 2 .. 26

5.2.4 Verification test 3 .. 27

5.2.5 Verification test 4 .. 27

5.2.6 Elevator verification .. 28

5.2.7 Conclusion of verifications .. 29

6 Test cases.. 30

6.1 The small building test ... 31

6.1.1 Results summary of the small building 33

6.2 The medium building test .. 33

6.2.1 Results summary of the medium building 35

6.3 The large building test ... 35

6.3.1 Results summary of the large building 37

6.4 The extended medium building test 37

6.4.1 Results summary of the extended building 39

7 Conclusions .. 40

8 Further work .. 41

9 Terminology .. 42

10 References ... 43

1

1 Introduction

1.1 Background

It is for most people common knowledge to not use an elevator during an

evacuation of a building when there is a fire. There are valid reasons why it

could potentially be a very bad decision to use the elevator. For instance, if

one would take the elevator and the power is cut by the fire, there is an

overwhelming risk that one becomes trapped in the elevator. There will

however always exist a category of people that will have a valid reason to use

an elevator instead of stairs.

Consider, for instance, a group of elderly or disabled people in a situation

where a tall building has to be evacuated. It may be difficult for them to use

the stairs, and in some cases it might even be impossible – they have to use the

elevator.

After the 9/11 attacks in 2001 there have been some debate about whether or

not to change the evacuation procedures of tall buildings [ref 1]. For this

reason and among others it is interesting to study the impact of elevator usage

during an evacuation.

The inspiration for this thesis ironically came from the exceptionally poor

elevators at LTH Campus Helsingborg. For a long period of time they were

not working properly, if at all. It became an annoying issue for us who used

them at a daily basis. They inspired us to think about various thesis topics

involving elevators one way or another, and we are very pleased to have

chosen this particular one. It turned out that the subject was most interesting to

study and work with.

1.2 Problem description

It is possible with mathematical models to study different systems and their

behaviours. However some systems are so complex in their nature that it

becomes very hard, if not impossible to study them without a dynamic model.

With the help of simulation it is possible to get insight of these complex

models.

2

To study the events that occur during an evacuation of a building discrete

event simulation was used in this thesis. Previous work on the topic at hand

have shown significant time related benefits when allowing people to use

elevators as well as stairs when evacuating tall buildings [ref 2]. Unlike the

previous work, the focus lies on studying smaller buildings, up to ten stories

high. With the help of simulation, it is possible to get a better understanding of

the potential gains of using the regular stairs alongside elevators during an

evacuation. The purpose of this thesis is to study the differences in evacuation

time when allowing people to use both stairs and elevators.

1.3 Goals

Ultimately the goal with this thesis was to study what kind of impact elevators

would have during a building evacuation with different types of buildings. To

do so, a simulation tool had to be developed. The tool would consist of two

parts, one with a graphical interface which allows the user to define a building

and a second part which actually ran the simulations.

The graphical tool had to:

 define a building with the help of a graphical interface

 change the layout of the building

 allow different testing parameters to be set

 save a building to a file

 load a building from a file

The simulation tool had to:

 run a simulation based on the building

 provide useful statistics of the simulation

 be verified to be correct

Because of our previous knowledge with the Java programming language it

was decided that all software development would be done in Java in order to

save time.

Since neither of us had any previous experience with simulation we had some

goal of our own as well:

 learn about discrete event simulation and how it could be applied to our

work

3

 investigate different ways to represent a building in a graphical interface

and how it can be used for a simulation

 investigate different data structures to represent a building for a

simulation

 investigate different ways to represent people in a building and how

they navigate in the building

1.4 Limitations

Due to time constraints and complexity, some simplifications were made.

Most of them are related to the behaviours of the people in the building. In an

evacuation where there is a real fire people act differently than they normally

do. There are likely people who panic and act irrational, everyone just want to

get out as fast as possible to safety.

Such behaviours are not taken into account in this thesis. While such factors

are important, the purpose of this thesis is to study the impact of elevators in

an evacuation and not human behaviour. The simulations do not take such

things into account; all people behave exactly the same. The goal for an

individual in the simulation is to get out using a predetermined fixed path, thus

a person queues as long as necessary in order to get out of the building.

As mentioned earlier, using an elevator in a building which is on fire could be

dangerous due to power outages, fire blockage etc. The simulations in this

thesis only focuses on evacuations to the extent that it acts as a fire drill, there

is no actual fire being simulated. More technical limitations are discussed in

chapter 4.

4

2 Work plan

In the beginning of the thesis a preliminary work plan was created. The plan

contained several different phases. The phases were – a pre-study phase, an

implementation phase, a test and verification phase and finally the final phase

which would consist of final polish and report writing. Since the project work

plan was not cast in stone the work plan was not followed strictly, but was

rather followed with a more flexible approach. Sometimes jumps were made

between phases in order to proceed more efficiently with the thesis.

A more in depth overview of the constructed simulation tool, called Building

Evacuation Simulation Tool (BEST), is described in chapter 4.

2.1 Pre-study phase

The pre-study phase mostly consisted of information gathering. Several papers

and books about elevator traffic and elevators in general were found and

studied [ref 3, 4, 5]. Afterwards an introduction to simulation was provided by

Christian Nyberg who is the supervisor for this thesis. Christian, who is a

lecturer for the advanced simulation course at LTH, provided course material

from the simulation course and a private introduction lecture about simulation.

Two home assignments about the development of simulation systems were

done. These provided a good insight of how a simulation tool would have to

be designed for this thesis.

2.2 Implementation phase

The implementation phase was divided into three stages (in order) – a GUI

(Graphical User Interface) development stage, a simulation development stage

and a last stage which combined both to a fully functional program.

In the beginning of the GUI stage a lot of decisions were made since the GUI

would define the rest of the program. Several different types of graphical

layouts were discussed before finally choosing one that suited the project

needs.

The simulation development started after the base GUI was functional. In this

stage functionality was created so that data from the GUI could be used to run

a simulation.

5

In the final stage enhancements of both the GUI tool and the simulation part

were made in order to improve the whole system.

2.3 Test and verification phase

In order to insure that the simulation tool provided correct results

mathematical verifications were made. The different test cases (buildings)

were simulated and their results studied.

2.4 Source criticism

The different information sources used in this thesis has either been from

published articles or literature used in university computer science programs.

Since the articles have been peer reviewed by others they have to be

considered reliable. The books have been used in a wide range of university

programs and are also considered reliable.

6

3 Introduction to simulation

3.1 Overview

There are several ways to study a system. With different mathematical models

it is possible to study some systems. For instance, it is possible to study

population growth with various mathematical models. Another way to study a

system is to simply observe or experiment with it. Consider a cashier queue at

a grocery store. It is possible to observe and measure the queue in order to

understand the system.

There are many reasons why simulation is a good way to study a system [ref

6]. Some systems are so complex that it becomes very difficult or even

impossible to study them without a dynamic model. In such cases it is possible

with the use of simulation to study the system.

Consider the previous cashier example. This system requires a lot of time to

test different types of scenarios. For example if one would want to study

queue time differences between having one and two open cashiers it would

require a lot of effort. Many measurements would have to be done before any

conclusive results could be made. All these measurements require a significant

time investment. With a computer such a simulation can be done many times

in a very short period of time. Some systems may even be dangerous to

experiment with or cost a lot of money in order to study them.

These reasons among others are why simulation is an efficient tool to study

and experiment with different systems.

Figure 3.1: Different ways to study a system

7

3.2 Dynamical systems

There are essentially three kinds of systems:

 Continuous-time systems

 Discrete-time systems

 Hybrid systems

In a continuous system the state variable changes in a continuous way. The

state change in a continuous-time system cannot be done abruptly. An

example of a continuous system is the temperature in an oven. These systems

are often described with differential equations.

In a discrete-time system a state can abruptly change to another. Such systems

can be described by queues.

Hybrid systems are systems that contain both continuous-time and discrete-

time subsystems.

Since the simulation in this thesis is described by using queues, the system is

discrete.

3.3 Approaches to simulation

There are two approaches to model a system for simulation, event scheduling

and process interaction.

3.3.1 Event scheduling
In order to do an event scheduling simulation the systems different states

needs to be analysed and defined. After this the different events that triggers

the states needs to be defined. This is done in order to create rules which

define how an event is handled.

A simulation consists of different events being triggered at different times. In

order to keep track of which events shall occur an event list is needed. The

event list keeps the order sorted by the arrival time in ascending order.

An event must contain a time and an event type. It is not unusual that an event

also contain some kind of attribute (e.g. which state added the event).

8

Figure 3.2: An event list containing three events, sorted by time

With the help of an event list it is now possible to perform a simulation.

A simple simulation could look like the following:

1. Pop the first event in the event list

2. Update the simulation time to the event time

3. Change state depending on the event type

4. Execute current state and add new events if needed

5. If the list is empty, quit, otherwise repeat steps

3.3.2 Process interaction
The event scheduling method and process interaction have a lot of in common

but differ on a few key points. Process interaction simulations consist of

processes. A process has some internal states and communicates with each

other by sending signals. When a process receives a signal it treats the signal

and various state changes and further signal sending may occur. If a signal is

created, the sender must assign an arrival time to the receiver.

A simulation consists of different processes treating signals. Just like with

event scheduling, a list containing the signals is needed. This list is ordered by

arrival time in ascending order.

With the help of the signal list it is now possible to perform a simulation.

A simple simulation could look like the following:

1. Pop the first event in the signal list

2. Update the simulation time to the arrival time

3. Activate receiver process

4. Process executes current state and sends new signals if needed

5. If the list is empty, quit, otherwise repeat steps

9

4 Building Evacuation Simulation Tool (BEST)

4.1 Overview

The BEST system is a program written in the Java programming language

with many classes working together. In this chapter a more in depth overview

of the different components will be explained.

Figure 4.1: An overview of the major system components in BEST

The system is designed with three major parts that interact with each other to

form the complete system. They are the GUI part, the graph and finally the

actual simulation. The main workflow for the system is first to model a

building with the GUI. While the building is actually being modelled, a graph

is constructed containing the important data which is required in order to run a

simulation.

4.2 The GUI

In the beginning of the implementation phase there were two main ideas for

the GUI. One was a form of a cell based editor (which is sometimes used for

2D game development. The idea was that it could be possible with the help of

a number of cells to define a room. The room could then be connected with

10

other nearby rooms by performing some calculations. This way it would be

possible to construct a building.

The other idea was to use a canvas to draw different types of rooms (with

shapes). It was then possible to connect rooms to each other to form a

building.

An early realisation was that both these methods could work to visually

represent a building. However they both suffered from the problem that they

were difficult to model with a data structure. They worked well visually but

the transition from a visual model to a functional model that could be used for

simulation made them unwanted.

Instead of thinking of how to represent a building visually, the solution was to

think of the functional representation of a building. With the help of a working

functional model it would be easier to construct a visual one.

An idea was to model buildings with the help of a graph. It would be easy to

construct a graph and to represent it visually in a way that it resembles a floor

in a building.

4.2.1 Tabs

Figure 4.2: An overview of the tab layout used in BEST

11

The BEST system uses a tabbed layout to represent floors in a building. When

the program is started only a single tab exists from the start, the information

tab (info tab). In figure 4.2 the info tab is highlighted. With the help of this tab

it is possible to create a new project, load an old project, save the current

project and to extend the number of floors the project has. The generated tabs

contain each a floor editor to model the building.

4.2.2 Floor editor

Figure 4.3: An overview of a floor

In Figure 4.3 a floor editor is displayed with five nodes. Each node represents

some kind of area. There are a total of four different placable nodes in BEST.

They are

 Room node (RoomVertex)

 Stair node (StairVertex)

 Elevator node (ElevatorVertex)

 Escape node (EscapeVertex)

12

By placing nodes on each floor and connecting them with edges it is possible

to form a model of a building.

Figure 4.4: A conceptual representation of the floor in figure 4.3

The edges represent hallways in some way between doors. Floors are

connected to each other with stairs and elevators.

A floor editor can perform five main operations:

 Place nodes

 Connect nodes to each other with edges

 Move nodes and edges

 Remove nodes and edges

 Set and change properties of nodes and edges

13

4.3 The graph

Once it became clear that a graph would be needed in order to construct a

building it was realised that writing a custom made graph would not be

necessary since there would likely exist graph libraries on the internet.

Unfortunately the libraries that were found online were surprisingly difficult

to use. Because all computer engineering students at LTH Campus

Helsingborg take the course Algorithms and Data structures it was

remembered that the course literature had a robust chapter on graph theory [ref

7]. This chapter also contained a fully functional graph class that was easy to

use. Even though it was fully functional, several big adjustments had to be

made in order to suit the BEST system.

4.3.1 From a building to a graph
Consider a graph G = (V, E) where V is the set of vertices and E is the set of

edges. Consider now a simplified building model which can be said to have a

set of rooms that are connected to each other. Such a building can be

represented by a graph, where the rooms represent vertices and the distance

between them are the edges.

Figure 4.5: A building with two floors represented as a graph. Notice the

single direction between stairs due to technical implementation in BEST

14

The graph in Figure 4.5 has five vertices,

 2,1,2,1, stairstairroomroomescV 

and seven edges,










1) esc, (stair1,

10) stair1, (stair2,6), room2, (stair2,

6), stair2, (room2,4), stair1, (room1,

4), room1, (stair1,

 1), stair1, (esc,
E

With a functional graph it is easy to traverse it and calculate paths for people

to use. Consider for example a person standing in room2 in Figure 4.5. In

order to calculate a path from room2 to the exit (esc) Dijsktra’s shortest path

algorithm can be used.

Since the BEST system would need four different placeable node types

containing unique data for each type. Four sub classes were created with the

original Vertex acting as the super class.

When a node is created in the floor editor it is added to the graph (this is

possible since all placable nodes inherit from Vertex). The different nodes can

then be connected to each other by adding edges with a cost, which represent

the distance between the nodes. When an edge is added to the graph, it is

added both ways. However between two stairs they are not added both ways.

This was an early design decision for BEST since during an evacuation

normally people only move down in the building.

4.4 The simulation

A building evacuation can be described with the help of queues. When people

move in the building, different queues arise. A door in a room or the stairs of a

floor is a typical place where large queues form up. The BEST system uses

discrete event simulation for this reason. The simulation method was chosen

to be process interaction since the simulation is based on many processes

sending signals to each other.

4.4.1 From a graph to a simulation
In order to simulate a building, a valid graph is needed. A valid graph must

contain at least one exit (EscapeVertex) and for each room (RoomVertex)

there must be a path leading to an exit. Before the simulation can run all the

data created by the user must be collected and processed. The goal for a

15

person in a building is to use its assigned path to reach the exit. A simulation

will end when all the persons in the building has reached their exit. To fully

understand how the simulation works a brief explanation of the different nodes

is needed. The nodes are:

 Vertex

 RoomVertex

 StairVertex

 ElevatorVertex

 EscapeVertex

The Vertex is the super class for all other vertices. It contains attributes which

all types of vertices have in common and information needed in order to build

a proper graph. A Vertex has a priority queue containing persons. It also

contains different measurement variables and level of service (LOS) variable.

The LOS variable describes how many persons a queue can work with at the

same time. For example, say that a Vertex has a LOS of 2. This means that the

door in the room can only service a maximum of 2 people at a time. The

measurement variables and priority queue will be discussed in further detail

later in this chapter.

The RoomVertex is the only node in the graph where people can exist in the

beginning of a simulation. A room has a certain width and height (area), a max

number of people in it which is used in case a random number of persons

should be generated. If a random number is not wanted it is possible to set a

fixed number instead. A percentage can also be set to indicate how many from

the specified room should use an elevator. If wanted, a room can be set not to

generate any persons in the beginning of a simulation.

The StairVertex and ElevatorVertex are used to connect floors with each

other. If a building is constructed with more than one floor stairs or elevators

are needed in order to build a valid graph.

EscapeVertex is the final destination for each person. Like with all real life

buildings a building must contain at least one exit.

Before the simulation start all the persons in the building need to know what

path they should take. This is done by evaluating the layout of the current

floor. Say for instance that a floor has two different stairs and the building has

two different exits. Then the persons generated on the floor will be equally

split among all the stairs and exits. The same applies for buildings with

elevators as well. A person has a random walking speed between 0.5 and 1.

When walking

16

between two stairs then speed is half the normal one.

Figure 4.6: The person distribution for a room between two stairs and exits

A RoomVertex has a width and height. This allows persons to be placed at a

random position in a room. To simplify calculations in BEST, each room has a

door set at the upper left corner. Since it takes a certain time to reach the door

in a room a person’s path list will always begin with a path to the same room

with a distance to the door.

Figure 4.7: Room1 containing two persons. Their path list is displayed

17

When the persons in the rooms have been generated the simulation can begin.

4.4.2 Signals and the signal list
A signal contains a type, a destination, an arrival time and a person.

The BEST system uses six types of different process signals. They are:

1. Arrival

2. Ready

3. Measure

4. Pickup

5. Down

6. Release

Signals 4-6 are elevator specific and will be treated in the next section.

public void TreatSignal(Signal x) {

 switch (x.signalType){

 case ARRIVAL:

 numberInQueue++;

 if(numberInQueue > los) {

 person.add(new PersonContainer(x.person, x.arrivalTime));

 x.person.updateTimes(this);

 }

 else {

 x.person.updateTimes(this);

 SignalList.SendSignal(READY, this, time + 1, x.person);

 }

 break;

 case READY:

 numberInQueue--;

 Vertex current = x.person.currentDestination();

 Vertex dest = x.person.nextDestination(true);

 if(dest != null) {

 if(dest instanceof StairVertex && current instanceof StairVertex) {

 SignalList.SendSignal(ARRIVAL, dest,

 time +(x.person.getDestinationCost() / x.person.getStairSpeed()), x.person);

 }

 else {

 SignalList.SendSignal(ARRIVAL, dest,

 time + (x.person.getDestinationCost() / x.person.getNormalSpeed()), x.person);

 }

 }

 else if(this instanceof EscapeVertex) {

 x.person.updateTimes(this);

 count++;

 }

 if(!person.isEmpty()) {

 SignalList.SendSignal(READY, this, time + 1.0, person.poll().p);

 }

 break;

 case MEASURE:

 noMeasurements++;

 accumulated = accumulated + numberInQueue;

 SignalList.SendSignal(MEASURE, this, time + 2, null);

 break;

 }

}

Figure 4.8: The TreatSignal method in Vertex

18

When signal is sent to a Vertex the TreatSignal method is invoked. There are

three states that can occur.

If the treated signal is of type arrival then the number of people in the queue is

increased. If the number of people in the queue is greater than the level of

service then the person is added to queuing list. Otherwise it sends a new

signal to the same process in ordered to be served (in other words the person is

ready to walk through the door).

When a ready signal arrives the number of persons in the queue is decreased.

A check is made to establish whether the person has reached the final

destination. If not, then the person is sent to its next destination. Before

leaving the vertex, the person next in the queue is alerted that the queue is now

ready to serve.

The measure signal is an independent signal that measures the activity in the

queue.

The signal list is globally available for all processes in the system. This allows

vertices to send signals between each other. Just like described in the

simulation chapter, the signal list is sorted by arrival time.

4.4.3 ElevatorVertex and Elevator
There are two types of elevator modes in BEST, a normal mode and an

emergency mode. The elevator has a priority queue with destinations (a

destination is a call from a floor with a certain time). Depending on which

mode is selected different priorities are made. In normal mode the queue is

sorted by time in ascending order while in the emergency mode the sorting is

made by floors in descending order. When a simulation begins all elevators

are located on the bottom floor. When a call to an elevator in normal mode is

received the following happens:

1. Add the call to the destination list

2. If the elevator is not busy pop the first element in the queue

3. Pickup at the popped destination

4. If there are destinations below the current one, go to those floors

5. Release the persons at the bottom floor

In normal mode, even if the elevator is at max capacity it will make stops at

lower floors. In emergency mode no such stops will occur in order to save

time.

19

The ElevatorVertex uses a modified method call of TreatSignal in order to

function properly. If the ElevatorVertex is on the bottom floor, the TreatSignal

call works the same way as in any other Vertex; otherwise a queue to the

elevator is formed. Many ElevatorVertex objects share a special elevator class

with each other in order to form a working elevator. This elevator class uses a

heavily modified TreatSignal method.

public void TreatSignal(Signal x) {

 switch(x.signalType) {

 case ARRIVAL:

 dests.add(new DestinationContainer(x.person.getFloor(), x.arrivalTime,

emergency));

 if(dests.size() == 1 && theOne == null) {

 SignalList.SendSignal(READY, this, time, x.person);

 }

 break;

 case READY:

 theOne = dests.poll();

 SignalList.SendSignal(PICKUP, this, time +

 ((theOne.getDestination()*cost)/speed), x.person);

 break;

 case PICKUP:

 ElevatorVertex current = null;

 for(ElevatorVertex e : ev) {

 if(e.getFloor() == theOne.getDestination()) {

 current = e;

 break;

 }

 }

 int count = 0;

 PersonContainer p;

 do {

 p = current.pop();

 if(p != null) {

 count++;

 persons.add(p.p);

 }

 } while(count < capacity && p != null);

 SignalList.SendSignal(READY, current, time, x.person);

 next = new DestinationContainer(-10, -10, emergency);

 for(DestinationContainer d : dests) {

 if(d.getDestination() < theOne.getDestination()) {

 next = d;

 break;

 }

 }

 if(next.getDestination() == -10) {

 SignalList.SendSignal(RELEASE, this, time + (count/current.getLos()) +

 ((theOne.getDestination()*cost)/speed), x.person);

 }

 else {

 if (emergency) {

 if (persons.size() >= capacity)

 SignalList.SendSignal(RELEASE, this, time +

 (count/current.getLos()) + ((theOne.getDestination()*cost)/speed), x.person);

 else

 SignalList.SendSignal(DOWN, this, time +

(count/current.getLos()) + (((theOne.getDestination()-next.getDestination())*cost)/speed),

 x.person);

 }

 else

 SignalList.SendSignal(DOWN, this, time + (count/current.getLos()) +

 (((theOne.getDestination()-next.getDestination())*cost)/speed), x.person);

 }

 break;

 case DOWN:

 counter++;

 if(persons.size() >= capacity) {

 last = new DestinationContainer(next.getDestination(), next.getTime(),

 emergency);

20

 int save = next.getDestination();

 next.setDestination(-10);

 for(DestinationContainer d : dests) {

 if(d.getDestination() < last.getDestination()) {

 next = d;

 break;

 }

 }

 if(next.getDestination() == -10) {

 next.setDestination(save);

 SignalList.SendSignal(RELEASE, this, time + 3 +

 ((last.getDestination()*cost)/speed), x.person);

 }

 else {

 SignalList.SendSignal(DOWN, this, time + 3 +

 (((last.getDestination()-next.getDestination())*cost)/speed), x.person);

 }

 }

 else {

 dests.remove(next);

 last = new DestinationContainer(next.getDestination(), next.getTime(),

 emergency);

 next.setDestination(-10);

 ElevatorVertex curr = null;

 for(ElevatorVertex e : ev) {

 if(e.getFloor() == last.getDestination()) {

 curr = e;

 break;

 }

 }

 int counter = 0;

 PersonContainer pc;

 do {

 pc = curr.pop();

 if(pc != null) {

 counter++;

 persons.add(pc.p);

 }

 } while(counter < capacity && pc != null);

 SignalList.SendSignal(READY, curr, time, x.person);

 for(DestinationContainer d : dests) {

 if(d.getDestination() < last.getDestination()) {

 next = d;

 break;

 }

 }

 if(next.getDestination() == -10) {

 SignalList.SendSignal(RELEASE, this, time + (counter/curr.getLos())

 + ((last.getDestination()*cost)/speed), x.person);

 }

 else {

 SignalList.SendSignal(DOWN, this, time + (counter/curr.getLos()) +

 (((last.getDestination()-next.getDestination())*cost)/speed), x.person);

 }

 }

 break;

 case RELEASE:

 for(Person per : persons) {

 SignalList.SendSignal(ARRIVAL, first, time +

 (persons.size()/((ElevatorVertex) first).getLos()), per);

 }

 persons.clear();

 if(dests.size() > 0)

 SignalList.SendSignal(READY, this, time +

 (persons.size()/((ElevatorVertex) first).getLos()), x.person);

 theOne = null;

 next = null;

 last = null;

 break;

 case MEASURE:

 break;

 }

}
Figure 4.9: The TreatSignal method in Elevator

21

When a signal is sent from an ElevatorVertex to an Elevator there are five

states that can occur (technically six with measure, although it is not used).

Unlike other signals, the signal to an elevator contains a destination instead of

a person because an elevator is a moving queue and people cannot be served

unless the elevator is at the same floor as them.

The arrival state works the same way as in Vertex. When an elevator call with

a destination arrives it is added to the queue and treated if the elevator is not

busy.

The ready signal pops the queue and serves the popped element. This means

that the elevator just released people and is ready for a new destination.

In the pickup state the elevator has arrived to its destination. The elevator gets

filled with people until the max capacity is reached or the people queue

becomes empty. If emergency mode is set the elevator will only stop and

pickup people at lower levels if the max capacity is not reached. In normal

mode the elevator stops at each lower floor where a call has been made even if

max capacity has been reached.

The down signal is essentially the same as the pickup state. If the elevator has

reached max capacity only a door opening will occur.

When a release signal is treated all the people in elevator will be sent to the

bottom ElevatorVertex’s queue. From there on, people will move normally

again. If the destination list in the elevator is not empty, the whole process will

be repeated.

4.4.4 Main simulation loop
ArrayList<Vertex> all = this.getAllVertices();

for(Vertex v : all) {

 if(v instanceof RoomVertex) {

 ((RoomVertex) v).init();

 }

 else {

 SignalList.SendSignal(Global.MEASURE, v, Global.time, null);

 }

}

for (Person p : persons) {

 SignalList.SendSignal(Global.ARRIVAL, p.getStart(), Global.time +

 (p.getDestinationCost() / p.getNormalSpeed()), p);

}

while(Global.count < persons.size()) {

 actSignal = SignalList.FetchSignal();

 Global.time = actSignal.arrivalTime;

 actSignal.destination.TreatSignal(actSignal);

}

Figure 4.10: The main simulation loop

When a valid graph has been constructed the simulation can start. The

simulation can be described as the following:

22

1. Initialize all rooms and begin to measure each vertex

2. Send the first arrival in every person’s path

3. Pop the first signal in the signal list

4. Set current time to signal arrival time

5. Invoke TreatSignal for the next destination

6. If there are people left in the building, repeat from step 3

When the simulation is complete BEST presents a list of relevant simulation

data.

================ 1 =====================

Room Time ActTime QTime

room1 4,57 4,57 0

exit 5,71 6,71 0

Total time: 12,28

Total qtime: 0

Avg time per room: 6,14

Avg qtime per room: 0

==

================ 0 =====================

Room Time ActTime QTime

room1 4,99 4,99 0

exit 8,32 9,9 0,58

Total time: 15,89

Total qtime: 0,58

Avg time per room: 7,95

Avg qtime per room: 0,29

==

Number of persons: 2

Avg persons per floor: 2

Total simulation time: 15,89

Total queue time: 0,58

Avg time per person: 14,09

Avg qtime per person: 0,29

Figure 4.11: The output of a simulation with two persons in one room and exit

BEST can also produce optional data such as the entire signal list and

individual signal list for each person. Such data can be interesting to study

when a more in depth overview of an evacuation is needed.

23

4.4.5 Technical information
In order for the queues to work properly they have a fixed service time. For

instance, in a room this time represents the time it takes to pass through the

door. For RoomVertex, StairVertex and EscapeVertex this time is set to 1.

For elevators the service time is based on the number of persons entering the

elevator and the elevators LOS plus a constant value for opening and closing

the doors. This constant is set to 3. For people that get out of the elevator there

is only a door opening and thus the constant is half of the original value. For

the tests that were made in Chapter 6 cubic rooms were used. Because each

person have a randomly selected walking speed it is possible for persons to

walk pass each other in queues.

Before a simulation begins, each room distributes travel paths to all people

and each room has a percentage set which sets the total amount of people that

goes to the elevator. For instance, if a room has 10 people and 5% is set to go

to the elevator then 0 people will go to the elevator (because of rounding). If

instead 19% would, 1 person would go. BEST is written without threads.

4.4.6 Technical limitations
There are some technical limitations in BEST that are important to understand.

Each person is given a fixed travel path. This path is never changed during a

simulation. This means that people will queue as long as necessary in order to

take their path even if there might be a better nearby path with less queue

time. This does not affect the outcome of the main analysis since all people

behave the same way, even if they use a stair or an elevator.

People can only move down in a building. When a connection between two

stairs is made in the graph, it is only made one way, from the high stair to the

low one. The same is somewhat conceptually true for an elevator. A person

can never enter the elevator on the bottom floor and exit at another.

An elevator always is set always to the first floor in the beginning of the

simulation and exits may only be placed at the first floor.

Because rooms are connected to each other with the graph, the distance

between them is always the same. This means that all persons that walk the

same path will have the exact same walking distance. In a real life example, if

two people walk along side each other in a curved hallway, their walking

distance will not be the same.

In BEST a building can have several elevators side by side on each floor. They

will however not work together; they all operate independently of each other.

24

5 Verification of BEST

Before studying the simulation data provided by BEST it is very important to

verify the correctness of it. Even though the data might appear to be correct it

is still important to actually verify it. In fact all simulations programs must be

verified to be correct and BEST is no exception. It is possible with different

mathematical approaches to verify the correctness of the simulation. Since the

BEST system uses queues for the simulations regular queuing theory can be

applied to validate the accuracy of the system.

5.1 Modifications

Since the simulations done by BEST are based on a finite amount of people in

a building some small changes had to be done in order to be able to verify the

correctness of the system. If a lot of changes are done to a system in order to

verify it then only the modified system will be verified and not the actual

system.

In order to verify the simulations the following was changed:

 Instead of a room generating a fixed amount of persons, a generator

was added to each room. The generator sent a new person to the room

with exponential distribution delay with a mean value of 1/λ.

 The generator sent a person directly to the door.

 A person no longer had a random speed; instead a constant value of 1

was given.

 The serving time in every queue was set to an exponential distributed

delay with a mean value of 1.

 The distance between the queues for each person was exponential

distributed with a mean of the given cost between the queues.

 Instead of showing individual results of each person, the simulation

now showed the average number of persons in every queue.

With the help of queuing theory these changes allowed verification of the

system. The exponential distribution function has the nice property of being

memoryless which simplifies the verification calculations.

These changes did not affect how the queues worked in general and thus did

not impact the system in any significant way. This implies that if the modified

system is shown to be correct, then the original system is also correct.

25

5.2 The verification tests

To verify the BEST system four different verification tests were made. For

each test four different values on λ were used. The different tests were then

simulated and the results compared with theoretical ones. Instead of ending

the simulation after a certain amount of time, the tests ended when a specific

amount of people had exited the building.

5.2.1 Theoretical calculations
In order to verify the system some theoretical values needed to be calculated

and then compared with results from the simulations. The following formulas

were used:








1
N ,




 

where N is the average number of people in a queue, ρ is the average time a is

queue busy, λ is the arrival intensity and µ the serving for a queue [ref 8].

5.2.2 Verification test 1

Figure 5.1: A queuing network with one room and one exit

µ1 = µ2 = 1

Each test ran until 100 000 persons had exited the building. Each test was

repeated 250 times and the average values were calculated.

λ µ ρ Theoretical

N

Simulated N

q1

Simulated N

q2

0.2 1 0.2 0.25 0.25011 0.25001

0.5 1 0.5 1 0.99985 1.00033

0.8 1 0.8 4 3.97880 3.98411

0.9 1 0.9 9 8.96887 9.05950

26

5.2.3 Verification test 2

Figure 5.2: A queuing network with two rooms and one exit

µ1 = µ2 = µ3 = 1

Each test ran until 100 000 persons had exited the building. Each room

generated 50 000 persons each. Each test was repeated 250 times and the

average values were calculated.

λ1 µ ρ Theoretical

N

Simulated N

q1

Simulated N

q2

0.1 1 0.1 0.11111 0.11074 0.11051

0.25 1 0.25 0.33333 0.33267 0.33260

0.4 1 0.4 0.66667 0.66631 0.66418

0.45 1 0.45 0.81818 0.81440 0.81584

Because there are two queues sending people to q3, q3’s λ will be doubled.

λ2 µ ρ Theoretical N Simulated N

q3

0.2 1 0.2 0.25 0.24947

0.5 1 0.5 1 0.99360

0.8 1 0.8 4 3.99213

0.9 1 0.9 9 8.97835

27

5.2.4 Verification test 3

Figure 5.3: A queuing network with two rooms and one exit

µ1 = µ2 = µ3 = 1

Each test ran until 100 000 persons had exited the building. Since q1 is the

only room with a generator it generates all persons. Each test was repeated

250 times and the average values were calculated.

λ µ ρ Theoretical

N

Simulated N

q1

Simulated N

q2

Simulated N

q3

0.2 1 0.2 0.25 0.25003 0.24976 0.24999

0.5 1 0.5 1 1.00645 1.00001 0.99950

0.8 1 0.8 4 3.99011 3.99050 4.00531

0.9 1 0.9 9 8.95008 8.98131 8.84814

5.2.5 Verification test 4

Figure 5.4: A queuing network with two rooms and one exit

µ1 = µ2 = µ3 = 1

Each test ran until 100 000 persons had exited the building. Each room

generated 50 000 persons each. Each test was repeated 250 times and the

average values were calculated.

28

λ1 µ ρ Theoretical N Simulated N

q1

0.1 1 0.1 0.11111 0.11097

0.25 1 0.25 0.33333 0.33246

0.4 1 0.4 0.66667 0.66381

0.45 1 0.45 0.81818 0.81535

Because q2 gets persons from both q1 and a generator, q2’s λ will be doubled.

Since q3 is affected by q2, q3’s λ will be doubled as well.

λ 2 µ ρ Theoretical

N

Simulated N

q2

Simulated N

q3

0.2 1 0.2 0.25 0.24923 0.24954

0.5 1 0.5 1 0.99578 0.99514

0.8 1 0.8 4 3.96403 3.99758

0.9 1 0.9 9 8.89662 8.90404

5.2.6 Elevator verification
The previous verification tests were made with no elevators. In order to verify

elevators in BEST a different approach was used since the elevators do not

behave in the same manner as a normal queue (an elevator is a “dynamic

queue”).

To verify elevators Little’s Law was used. Little’s Law states that the average

number of people in a queue system is equal to arrivals per second times the

average time spent in the system.

(Little’s Law)

Figure 5.5: A queuing network with one room, one elevator, stair and exit

TN  

29

λ = λ1 = 0.2

µ1 = µ2 = µ3 = µ4 = µ5 = µ6 = 1

Each test ran until 100 000 persons had exited the building. Since q1 is the

only room with a generator it generates all persons. Every other person was

sent to q2. Each test was repeated 250 times.

During the test the time (T) and the average number of people in the building

(N) was measured.

T = 34.62101

N = 6.92338

According to Little’s Law the average number of persons in the house would

be

5.2.7 Conclusion of verifications
From all the different verification tests no major deviation between the

theoretical results and the simulated results were found. Since the modified

system has shown to be correct it implies that the original one is correct as

well.

92420.6 NTN 

30

6 Test cases

To study the differences between evacuation times four buildings were

modelled; a small, medium, large and an extended medium building. Each

building was simulated several times, with an increasing percentage of people

choosing an elevator to exit the building. In this way it was possible to plot a

full scale graph from 0% usage to 100%. All floors in a building are identical,

with the exception of the first floor which has a number of exits.

Building size Small Medium Large Extended

Medium

Number of floors 3 5 10 10

Number of stairs 1 1 2 1

Number of

elevators

1 2 4 2

Number of exits 1 2 4 2

Persons per floor 20 200 400 200

Rooms per floor 3 10 20 10

Elevator capacity 5 10 15 10

Elevator speed 1 1.25 1.5 1.25

Height between

floors

3 3 4 3

Stair length 6 6 8 6

LOS elevator 2 2 2 2

LOS stair 2 2 2 2

LOS rooms 1 1 2 1

LOS exit 2 2 3 2

Number of 5x5

rooms

6 20 0 40

Number of 7x7

rooms

0 15 0 30

Number of 9x9

rooms

0 0 80 0

Number of 10x10

rooms

3 15 80 30

Number of 12x12

rooms

0 0 40 0

Number of

simulations per %

25 000 25 000 1000 10000

Figure 6.1: Building description of the test cases

31

Room type Number of persons in room

5x5 5

7x7 10

9x9 15

10x10 20

12x12 30

Figure 6.2: Room capacity overview in the test cases

Due to the complexity of the large and the extended medium building the

simulations per percent had to be lowered.

6.1 The small building test

Figure 6.3: Building layout of the small building (first floor is shown)

32

Figure 6.4: Total evacuation time for the small building

Figure 6.5: Average evacuation time per person in the small building

33

Figure 6.6: Average queue time per person in the small building

6.1.1 Results summary of the small building
Figure 6.4 show that there are some very small time gains around when 20% -

40% use the elevator. When the percentage of people that use the elevator

increases, large queues form up in front of the elevator. Since the elevator has

a small capacity people have to wait a long time in order to get out.

6.2 The medium building test

Figure 6.7: Building layout of the medium building (first floor is shown)

34

Figure 6.8: Total evacuation time for the medium building

Figure 6.9: Average evacuation time per person in the medium building

35

Figure 6.10: Average queue time per person in the medium building

6.2.1 Results summary of the medium building
Figure 6.8 show that there are significant time gains when 10% - 25% use the

elevator, up to 60 seconds faster. Around these percentages the elevator

capacity works well with the amount of arriving. When the percentage of

people that use the elevator increases, large queues form up in front of the

elevator and increase the total evacuation time.

6.3 The large building test

Figure 6.11: Building layout of the large building (first floor is shown)

36

Figure 6.12: Total evacuation time for the large building

Figure 6.13: Average evacuation time per person in the large building

37

Figure 6.14: Average queue time per person in the large building

6.3.1 Results summary of the large building
The simulations produced some interesting results. The total evacuation time

shown in Figure 6.12 did not show any time gains when allowing people to

use the elevators. However the average time a person spends in the building,

shown in Figure 6.13, is lowered when around 5-10% uses the elevator.

6.4 The extended medium building test

Figure 6.15: Building layout of the extended building (first floor is shown)

38

Figure 6.16: Total evacuation time for the extended building

Figure 6.17: Average evacuation time per person in the extended building

39

Figure 6.18: Average queue time per person in the extended building

6.4.1 Results summary of the extended building
The simulations of the extended medium building produced results similar to

the medium building. Like in the medium building, Figure 6.16 show that

there are significant times gains when 5% - 15% use the elevator, up to 120

seconds faster.

40

7 Conclusions

The tests performed in chapter 6 suggest that the architecture of a building and

elevator properties play a big part on the evacuation times. The sudden jumps

in the graphs are due to the fact that BEST rounds down the amount of people

going to the elevators (this is described in detail in Chapter 4.4.5). Three of

the buildings showed improvements in evacuation times whereas only two of

them were significant enough to be of importance.

The emergency elevator mode always performed better than the regular

elevator in respect to the total evacuation time. However in the emergency

mode the average queue time and average time spent in a building was higher

than in regular mode. This is because an elevator in emergency mode does not

pickup people after when they called for the elevator but rather which floor the

call was made from. This means that people on lower floors will always have

to queue a long time since the elevator picks people up on the higher floors

first.

The results from the large building suggest that there is not a clear connection

between the average time spent in a building and the total evacuation time. It

is hard to say exactly why the total time evacuation graph looks like it does,

but one theory is that the layout of the building combined with the elevator

properties are not suited well for evacuation with elevators.

From the data produced in the tests it is not possible to draw any solid

conclusions about the benefits of elevator usage in smaller buildings. In all but

one of the test cases elevators improve evacuation times when a low

percentage of people use the elevators. As the percentage grows it has a

negative impact on the evacuation. As mentioned, the data suggest that the

architecture of a building and elevator properties play a major part in the

evacuation times.

41

8 Further work

Many of the technical limitations in BEST were a result of time constraints. A

future project would be to allow dynamic paths and decision making for

people inside building. This would be interesting to simulate since people

normally do not stay in a queue forever if there is a better alternative path. In

BEST people stay in a queue as long as needed. This means that if a person on

the top floor in a large building decides to use an elevator during an

evacuation, the person is willing to wait a very long time for it to arrive. In a

real life situation the person would probably look for another route out of the

building after such a long period of waiting.

The gathered test results suggest that the design of a building has a great

impact on the evacuation. The buildings in the test cases were made up and

not based on any real data. It would be interesting to run simulations on real

building data since the design of a building have such a great impact on the

evacuations.

In future simulations elevators should be able to collaborate with each other in

order to achieve optimal performance.

42

9 Terminology

BEST – Building Evacuation Simulation Tool, the tool created in this thesis

Discrete event simulation – A simulation of events ordered by time

Edge – The connection between two edges

Graph – A collection of a set of vertices and edges

GUI – Graphical User Interface

Level of service – The amount of people that can be served in a queue

Simulation – A way to study a system using a computer

Vertex – The central building unit of a graph

43

10 References

[1] J. W. Fortune (2002). New Thoughts on the Use of Elevators for

Emergency Evacuations of High-Rise Buildings, Elevator World, November

2002, pages 110-113.

[2] Henri Hakonen (2003). Simulation of Building Traffic and Evacuation by

Elevators.

[3] M. Schreckenberg, S. D Sharma (2005) Pedestrian and Evacuation

Dynamics

[4] G.C Barney (2003) Elevator Traffic Handbook : Theory and Practice

[5] Hatem El Shafie (2004) Simulation of pedestrian circulation in dinning

halls

[6] Christopher A . Chung (2003). Simulation Modeling Handbook

A Practical Approach. Chapter 1, Chapter 4.

[7] Mark A. Weiss (2006). Data Structures and Problem Solving Using Java,

Third Edition. Chapter 14.

[8] Ulf Körner (2003). Köteori. Chapter 2.

